Instance-Based Online Learning of Deterministic Relational Action Models
نویسندگان
چکیده
We present an instance-based, online method for learning action models in unanticipated, relational domains. Our algorithm memorizes preand post-states of transitions an agent encounters while experiencing the environment, and makes predictions by using analogy to map the recorded transitions to novel situations. Our algorithm is implemented in the Soar cognitive architecture, integrating its task-independent episodic memory module and analogical reasoning implemented in procedural memory. We evaluate this algorithm’s prediction performance in a modified version of the blocks world domain and the taxi domain. We also present a reinforcement learning agent that uses our model learning algorithm to significantly speed up its convergence to an optimal policy in the modified blocks
منابع مشابه
Efficient Learning of Relational Models for Sequential Decision Making
OF THE DISSERTATION Efficient Learning of Relational Models for Sequential Decision Making by Thomas J. Walsh Dissertation Director: Michael L. Littman The exploration-exploitation tradeoff is crucial to reinforcement-learning (RL) agents, and a significant number of sample complexity results have been derived for agents in propositional domains. These results guarantee, with high probability, ...
متن کاملFrom Non-Deterministic to Probabilistic Planning with the help of Statistical Relational Learning
Using machine learning techniques for planning is getting increasingly more important in recent years. Various aspects of action models can be induced from data and then exploited for planning. For probabilistic planning, natural candidates are learning of action effects and their probabilities. For expressive formalisms such as PPDDL, this is a difficult problem since they can introduce easily...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملRelational Instance Based Regression for Relational Reinforcement Learning
The full paper on this topic appears in the Proceedings of the Twentieth International Conference on Machine Learning. [1] Q-learning [6] is a model free approach to tackle reinforcement learning problems which calculates a Qualityor Q-function to represent the learned policy. The Q-function takes a state-action pair as input and outputs a real number which indicates the quality of that action ...
متن کاملA Higher Order Online Lyapunov-Based Emotional Learning for Rough-Neural Identifiers
o enhance the performances of rough-neural networks (R-NNs) in the system identification, on the base of emotional learning, a new stable learning algorithm is developed for them. This algorithm facilitates the error convergence by increasing the memory depth of R-NNs. To this end, an emotional signal as a linear combination of identification error and its differences is used to achie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010